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On the denoising problem

Ashot Vagharshakyan

Abstract
In various applications the problem on separation the original signal and the noise arises. In this

paper we consider two cases, which naturally arise in applied problems. In the first case, the original
signal permits linear prediction by its past behavior. In the second case the original signal is the values of
some analytic function at a points from unit disk. In the both cases the noise is assumed to be a stationary
process with zero mean value.

Let us note that the first case arises in Physical phenomena consideration. The second case arises in
Identification problems for linear systems.
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1 Introduction.

One of the basic problem of Signal Processing Theory is the estimation of the original signal f(n) in
presence of an additive noise, i.e.

X(n) = f(n) + ξ(n), n = 0,±1, . . .

where ξ(n), n = 0,±1, . . . is a stationary process, with zero mean value.
Thus, the available informations are the values of observed signal

X(n), n = 0,±1, . . .

and the statistical properties of the noise

ξ(n), n = 0,±1, . . .

We want to separate f(n), n = 0,±1, . . . from the observed signal.
Let us note, that this problem is very old, see [10], [12], etc., and there are many results on this

subject.
In this problem it is very important to specify the class of original signals.
Here, we consider two cases.
First case: A-priori it is known, that the original signal

f(n), n = 0,±1, . . .

permits linear forecasting. This case naturally arises in Physical phenomena consideration.
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Second case: The original component f(n) in the observed signal X(n), is the values of a bounded
analytic function F (z), |z| < 1, at some points zn, |zn| < 1, n = 1, 2, . . ., i. e.

f(n) = F (zn), n = 1, 2, . . .

The second case naturally arises in testing and identification problems. The bounded analytic function
F (z), |z| < 1, is the transfer function of some Linear System, which is a subject to be determine.

2 Some classes of signals permitting forecasting

In this section we introduce some classes of signals, which, we will interprete as original signals.
With each bounded signal f(n), n = 0,±1, . . . we associate a generalized function f̂ defined on the

unit circle. It has the following Fourier series expansion

f̂(z) =
∞∑

n=−∞
f(n)zn, |z| = 1.

Definition 1. We say, that a bounded signal f(n), n = 0,±1, . . . permits Linear Forecasting of the
other σ > 0, and denote {f(n)}∞n=−∞ ∈ LF (σ), if there is a sequence h(k), k = 1, 2, . . . such that

|h(k)| ≤ Aexp{−kσ}, k = 1, 2, . . .

where A is constant number and

f(n) =
∞∑

k=1

f(n− k)h(k), n = 0,±1 . . .

Definition 2. We write {f(n)}∞n=−∞ ∈ LF (∞), if there is a finite sequence of numbers h(k), k =
1, 2, . . . ,m, such that

f(n) =
m∑

k=1

f(n− k)h(k), n = 0,±1 . . .

In the further consideration we need the following classical results.
Theorem (L. Carleson). Let a nontrivial analytic function F (z), |z| < 1, satisfy the conditions

|F (n)(z)| ≤ Bnn
n
α , |z| < 1, n = 0, 1, . . .

where 0 < α < 1/2. Let F (z) vanish at each point of the set z ∈ E with all its derivatives.
Then

1
2π

∫ π

−π

dt

ρ
α

1−α (eit, E)
< ∞, (1)

where ρ(eit, E) is the distance of the point eit from the subset E.
This theorem was proved by L. Carleson [2]. Let us note, that the complete description of zero sets

for the functions from this class is complicated and one can find the corresponding results in [5].
The following theorem was proved by R. Salinas [11]. Here we give an equivalent version of its original

formulation.
Theorem (R. Salinas). Let a bounded analytic function F (z), |z| < 1, satisfy the conditions

|F (n)(z)| ≤ Bnn
n
α , |z| < 1, n = 0, 1, . . . (2)

where 1/2 ≤ α. If at some point z0, |z0| = 1, we have F (n)(z0) = 0, n = 0, 1, . . . , then F (z) ≡ 0.
It turners out, that all the classes LF (σ) for 1

2 ≤ σ, coincide with LF (∞).
Theorem 1. If 1

2 ≤ σ, then LF (σ) = LF (∞).
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Proof. Since f ∈ LF (σ), 1
2 ≤ σ, so, there is a sequence hk, k = 1, 2, . . . such that

|h(k)| ≤ Aexp{−kσ}, k = 1, 2, . . . (3)

and

f(n) =
∞∑

k=1

f(n− k)h(k), n = 0,±1 . . . (4)

Let us denote

F (rz) =
∞∑

n=−∞
f(n)r|n|zn, |z| = 1, 0 ≤ r < 1,

and

H(rz) = 1−
∞∑

k=1

hkrnzn.

The equality (4) may be written in the following form

lim
r→1−0

1
2π

∫ π

−π

F (reix)H(reix)e−inxdx = 0, n = 0,±1, . . .

So, the boundary values of the function F (z) on the unit circle, generates a generalized function with
support

supp(F ) ⊂ {z; |z| = 1, H(z) = 0}.

From the inequalities (3) it follows, see [8], p. 26,

|H(n)(z)| ≤ Ceann
n
σ , |z| < 1, n = 1, 2, . . .

for some constants C and a. Since 1
2 ≤ σ, the function H(z) satisfies conditions of R. Salinas theorem.

Consequently, it can vanish at finite number points only, and so supp(F ) consists with finite number
points. Thus, the bounded signal f(n), permits the following representation

f(n) =
m∑

k=1

ckeixkn, n = 0,±1, . . . ,

so f ∈ LF (∞). Indeed, we have

f(n) =
m∑

k=1

det(Dk)
det(D)

,

where Dk is the following matrix
e−ix1 . . . f(n− 1) . . . e−ixm

e−2ix1 . . . f(n− 2) . . . e−2ixm

. . . . . . . . . . . . . . .
e−mix1 . . . f(n−m) . . . e−mixm


and D is 

e−ix1 . . . e−ixk . . . e−ixm

e−2ix1 . . . e−2ixk . . . e−2ixm

. . . . . . . . . . . . . . .
e−mix1 . . . e−mixk . . . e−mixm



3



3 Denoising problem for the signals permitting forecasting

In the further considerations we will need the following version of the Law of large numbers, see [6], p.
222, and [9], p.216.

Theorem (Law of Large numbers). Let ξk, k = 0,±1, . . . be a sequence of independent random
variables with the same distribution and with the zero mean values. Let E(|ξ0|p) < ∞, where 1 ≤ p ≤ 2.
Let

u(reit) =
∞∑

k=−∞

ξkr|k|eitk.

Then, for 1/p < α, by probability one, we have

max
t
|u(reit)| = O

(
1

(1− r)α

)
, r → 1− 0.

Theorem 2. Let 0 < α < 1
2 and a closed subset E ⊂ {z : |z| = 1} satisfy the condition

1
2π

∫ π

−π

dx

ρ
α

1−α (eix, E)
< ∞.

Let u(n), n = 0,±1, . . . be a bounded sequence and

U(z) =
∞∑

n=−∞
u(n)r|n|eixn, z = reix, 0 < r < 1,

be an harmonic function. Let the support supp(U) of the generalized function arising by boundary values
of U(z), be situated in E.

Then
lim

r→1−

1
2π

∫
Er

U(rz)|dz| = u(0),

where
Er =

{
z; |z| = 1, |U(rz)| > (1− r)

α
3α−2

}
.

Proof. It is sufficient to prove

lim
r→1−

∫
T\Er

|U(reix)|dx = 0,

where T = {z : |z| = 1}.
Let Ik, k = 1, 2, . . . be nonintersecting arcs on the unit circle laying out of the closed subset E. Let

ξk, ηk be the end points of the arc Ik.
Let us denote

∆k = {rz; z ∈ Ik, 0 < r < 1}.

By maximum principle, for arbitrary point z ∈ ∆k, we have

|U(z)| ≤ A

(
1− |z|2

|ξk − z|2
+

1− |z|2

|ηk − z|2

)
.

So, for each k = 1, 2, . . . we have ∫
Ik\Er

|U(rz)||dz| = (5)

=
∫

Ik\Er

|U(rz)|
2−3α
2−2α |U(rz)|

α
2−2α |dz| ≤

≤ A1(1− r)−
α

2−2α

∫
Ik\Er

|U(rz)|
α

2−2α |dz| ≤
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≤ A2(1− r)
1−2α
1−α

∫ |Ik\Er|/(1−r)

0

(1 + x)
2α

2α−2 dx,

where A1, A2 are some constants. So, ∫
T\Er

|U(reix)|dx ≤

≤ A2(1− r)
1−2α
1−α

∞∑
k=1

∫ |Ik\Er|/(1−r)

0

(1 + x)
2α

2α−2 dx ≤

≤ A2(1− r)
1−2α
1−α

 ∑
|Ik\Er|<1−r

|Ik \ Er|
1− r

+
∑

|Ik\Er|>1−r

(
|Ik \ Er|

1− r

) 1−2α
1−α

 ≤

≤ A3

∞∑
k=1

|Ik \ Er|
1−2α
1−α .

For each k = 1, 2, . . . the equality
lim

r→1−
m(Ik \ Er) = 0

holds. Since, by theorem’s condition
∞∑

k=1

|Ik|
1−2α
1−α < ∞

so, the integral (5) goes to zero, if r → 1− 0.
Theorem 3. Let 2/5 < α < 1/2 and 2/α < p + 3 < 5. Let

x(n) = f(n) + ξ(n), n = 0,±1, . . .

where
{f(n)}∞n=−∞ ∈ LF (α).

We suppose that supp(F ) contains only a finite number isolated points, where, in the sense of generalized
functions,

F (z) =
∞∑

n=−∞
f(n)zn, |z| = 1.

The noise ξk, k = 0,±1, . . . is a sequence of independent random variables, which have the same
distributions with zero mean values, i.e. E(ξk) = 0, k = 1, 2, . . . and E(|ξk|p) < ∞.

Then, by probability one we have

lim
r→1−

∫
Er

X(rz)z−n|dz| = f(n), n = 0,±1, . . .

where

X(rz) =
∞∑

n=−∞
x(n)r|n|zn, |z| = 1,

and
Er = {z; |z| = 1, (1− r)1/p|X(rz)| > 1}.

Proof. Let E = supp(F ) and Ik, k = 1, 2, . . . be the biggest arcs on the unit circle laying outside
of the close subset E. Since {f(n)}∞n=−∞ ∈ LF (α) so, by L. Carleson’s theorem

∞∑
k=1

|Ik|
1−2α
1−α < ∞.
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Let 1
p < σ < α

2−3α . It is sufficient to prove, that for the subsets

Gr = {z; |X(rz)| > (1− r)−σ}, 0 < r < 1,

by probability one we have

lim
r→1−0

|Gr|
(1− r)σ

= 0. (6)

Thanks of theorem on Law of Large numbers, by probability one, we have

max
t
|u(reit)| = O

(
1

(1− r)σ

)
, r → 1− 0,

where

u(rz) =
∞∑

n=−∞
ξ(n)r|n|zn, |z| = 1,

So, (6) follows from the following one

lim
r→1−0

m(Fr)
(1− r)σ

= 0, (7)

where
Fr = {z; |z| = 1, (1− r)σ|F (rz)| > 1}.

Now, to prove (7) let us note, that for each point z ∈ Fr ∩ Ik we have

1 ≤ (1− r)σ|F (rz)| ≤ A(1− r)σ

(
1− |z|2

|ξk − rz|2
+

1− |z|2

|ηk − rz|2

)
.

If
|Ik| > (1− r)(1+σ)/2

then

m

({
z, z ∈ Ik, 1 ≤ A(1− r)σ

(
1− |z|2

|ξk − rz|2
+

1− |z|2

|ηk − rz|2

)})
≤

≤ B(1− r)(1+σ)/2,

where ξk and ηk are endpoints of the arc Ik. Consequently,

m(Fr) ≤
∑

|Ik|<(1−r)(1+σ)/2

|Ik|+
∑

|Ik|>(1−r)(1+σ)/2

(1− r)(1+σ)/2.

This inequality implies (7).

4 Uniqueness theorems for analytic functions

In this section we discuss a uniqueness theorem for some classes of analytic functions, where the conclusion
f(z) ≡ 0 follows from the condition that f(zn) goes to zero over some sequence of points zn, n = 1, 2, . . ..
This type results are necessary in investigation of denoising problem, which we will discuss in the next
section.

One can find the survey on this type uniqueness results in [5]. A new example is the given below
theorem.

At first let us give here some auxiliary definitions and classical results.
Definition 3. Let h(t), 0 < t, be a continuous, non-negative function. Let the family of arcs

{Sk}∞k=1 cover a given set E in unite disk;

E ⊆
∞⋃

k=1

Sk.
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Let us put

Mh(E) = inf
∞∑

k=1

h(|Sk|),

where |S| is the length of the arc S and the infimum is taken over the family of all covers.
Definition 4. A function f(t), −π < t < π, belongs to Besov space Bα

2 if

||f ||2α =
∫ π

−π

|f(x)|2dx +
∫ π

−π

∫ π

−π

|f(x)− f(y)|2

|x− y|1+2α
dxdy < ∞,

where 0 < α < 1.
For arbitrary function g(t) ∈ L1(−π, π) let us denote

g∗(t) = sup
0<δ

1
2δ

∫ t+δ

t−δ

|g(x)|dx,

where g(t) is assumed to be continued as a 2π periodic function on (−∞,+∞).
For a subset E the quantity

Cα(E) =
(

inf
µ

∫ π

−π

∫ π

−π

dσ(x)dσ(y)
|x− y|α

)−1

,

where the infimum is taken over the probability measures with support in E, is known as α− capacity of
the subset E.

The following lemma is announced in the book [1], p.35.

Lemma 1. Let E be Borelian set and Cα(E) = 0, where 0 < α < 1. Let 0 ≤ h(r), r > 0, be an
increasing function and ∫

0

dh(r)
rα

< ∞.

Then
Mh(E) = 0.

Lemma 2. Let f(x) ∈ Bα
2 and 0 < β ≤ α. Then there is a function g(x) ∈ Bα−β

2 such that

1
2π

∫ π

−π

1− |z|2

|z − eit|2
f(t)dt =

=
1
2π

∫ π

−π

g(t)
(z − eit)1−β

dt +
1
2π

∫ π

−π

g(t)
(z̄ − eit)1−β

dt, |z| < 1.

Proof. Let to the function f(x) correspond the following Fourier series

f(x) ∼
∞∑

k=−∞

akeikx.

Since f(x) ∈ Bα
2 , so

∞∑
k=−∞

|ak|2|k|2α < ∞.

We can write

F (reix) =
∞∑

k=−∞

akr|k|eikx =
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=
1
2π

∫ π

−π

( ∞∑
k=−∞

Γ(1 + |k| − β)
Γ(1− β)Γ(1 + |k|)

r|k|eik(x−t)

)
g(t)dt,

where

g(t) =
∞∑

k=−∞

ak
Γ(1− β)Γ(1 + |k|)

Γ(1 + |k| − β)
eixk.

Lemma 3. Let f(x) ∈ Bα
2 , where 0 < α < 1 and 0 < β ≤ α. Then there is a subset F ∈ {z; |z| = 1}

with
Cα−β(F ) = 0

end for each eix /∈ F there is a number A(x) such that

|F (z1)− F (z2)| < A(x)|z1 − z2|α−β ,

where
|eix − zj | < 2(1− |zj |), j = 1, 2,

holds.

Here F (z) is harmonic function with the boundary values f(x), i.e.

lim
r→1−

F (reix) = f(x).

Proof. Thanks of the previous lemma there is a function g(x) ∈ Bα−β
2 such that

∂F (z)
∂z

=
1− β

2π

∫ π

−π

g(t)
(z − eit)2−β

dt.

Taking into account the inequalities

1− |z| < |eit − z|,
∣∣∣∣eit − z

|z|

∣∣∣∣ ≤ 2|eit − z|,

for each |z| < 1, we have
(1− |z|)1−β

1− β

∣∣∣∣∂F (z)
∂z

∣∣∣∣ ≤
≤ 1

2π

∫ π

−π

(1− |z|)1−β

|z − eit|2−β
|g(t)|dt ≤

≤ 1
2π

∫
|eit−z/|z||≤y

|g(t)|
(1− |z|)

dt +
1
2π

∫
|eit−z/|z||>y

(1− |z|)1−β

|eit − z/|z||2−β
|g(t)|dt.

If z, |eix − z| ≤ 2(1− |z|), then putting y = (1− |z|) we get

(1− |z|)1−β

∣∣∣∣∂F (z)
∂z

∣∣∣∣ ≤
≤ 1

2π

∫
|t−x|≤(1−|z|)

|g(t)|
(1− |z|)

dt + (1− |z|)1−β

∫ 2

1−|z|

1
y2−β

d

(∫ x+y

x−y

|g(t)|dt

)
≤

≤ g∗(t) + (1− |z|)1−β

∫ 2

1−|z|

1
y3−β

(∫ x+y

x−y

|g(t)|dt

)
dy.
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Consequently,

(1− |z|)1−β

∣∣∣∣∂F (z)
∂z

∣∣∣∣ ≤ g∗(x).

Let l be the linear interval with end points z1, z2 ∈ {z, |eix − z| ≤ 2(1− |z|)}. We have

|F (z1)− F (z2)| ≤
∣∣∣∣∫

l

∂F (z)
∂z

dz

∣∣∣∣ ≤
≤ g∗(x)

∫
l

|dz|
(1− |z|)1−α+β

≤ g∗(x)|z1 − z2|α−β .

It is sufficient to note, that
Cα−β(F ) = 0,

where F = {x; g∗(x) = ∞}.
The proof of the following lemma may be found in [14].
Lemma 4. Let g(t), 0 < t, be positive and nondecreasing function. Let u(z) be non-negative

harmonic function defined on the unit disk. Then, the subset

F =

{
ξ; |ξ| = 1, sup

z∈∆(ξ)

u(z)
g(1− |z|)

= ∞

}

has zero Hausdorff’s measure, i.e.
Mh(t)(F ) = 0,

where h(t) = tg(t).
Theorem 5. Let {ξn} be a sequence in the unit disk with

lim
n→∞

|ξn| = 1.

Let E be a subset of unit circle such that for some continuous function 0 ≤ h(t), 0 < t, satisfying the
condition

lim
t→0+

h(t)
t log 1

t

= 0

we have Mh(E) > 0.
Let for each point y ∈ E there is a subsequence {ξnk

} such that∣∣∣∣y − ξnk

ξnk

∣∣∣∣ < 2(1− |ξnk
|), k = 1, 2, ...

Let 0 ≤ α < 1 be a fixed number and f(z) is an analytic function with∫ 1

0

∫ π

−π

|f ′(z)|2(1− |z|)αdxdy < ∞,

and
lim

n→∞
f(ξn) = 0 (8)

then f(z) ≡ 0.
Proof. At first let us note, that instead of (8) we can assume

lim
n→∞

f(ξn)
(1− |ξn|)α−β

= 0,

where 0 < β < α is a constant. Indeed, By lemma 3 there is a subset F1, with

Cα−β(F1) = 0,
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end for each x /∈ F1 there is a number A(x) < ∞ such that for arbitrary points z1, z2 from the unite disk,
satisfying the condition

|eix − zj | < 2(1− |zj |), j = 1, 2,

we have
|f(z1)− f(z2)| < A(x)|z1 − z2|α−β .

In particularly, if x ∈ E \ F1 then
|f(ξn)| < A(x)(1− |ξn|)α−β

for each point ξn satisfying the condition

|eix − ξn| < 2(1− |ξn|).

Thanks of lemma 1 we have
Mh(F1) = 0

and so,
Mh(E \ F1) > 0.

For each point z, |z| < 1, let us denote

C(z) = {w; |w| = 1, |w − z| ≤ 2(1− |z|)}.

The zeros Λ = {zk}∞k=1 of our function f(z) satisfy condition

∞∑
k=1

(1− |zk|) < ∞

and, (see [13]), we have also
1
2π

∫ π

−π

log ρ 1+α
2

(eix,Λ)dx > −∞,

where

ρσ(ξ,Λ) = inf
z∈Λ

|ξ − z|
(1− |z|)σ

.

Let us consider a new function

G(w) =
∞∑

k=1

χk(w), w ∈ ∂D,

where χk(w) is the characteristic function of the arc C(zk).
We want to prove that the subset

F2 = {w; w ∈ ∂D, G(w) = +∞}

satisfies the condition
Mt log 1/t(F2) = 0. (9)

Let us suppose Mt log 1/t(F2) > 0. Then, see [1], p. 18, there is a compact subset F ⊂ F2 for which

Mt log 1/t(F ) > 0.

For each natural N , the family of subsets C(zk), k = N,N + 1, . . . cover F . By Alfor’s theorem, see
[1], from that family of arcs we can choose a finite number, which cover F and have a finite multiplicity
less A, where A is an absolute constant. Let

C(zk1), . . . , C(zkm
)

be the constructed subfamily, which cover the set F .
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We can write (
1− 1 + α

2σ

) m∑
j=1

|C(znj
)| log

e

|C(znj
)|
≤

≤
(

1− 1 + α

2σ

) m1∑
j=1

∫
C(znj

)

log+

(
1

|w − znj
|

)
|dw| ≤

≤
m1∑
j=1

∫
C(znj

)

log+

(
(1− |znj

|)(1+α)/2

|w − znj |

)
|dw| ≤

≤ A

∫
QN

log+

(
sup

k

(1− |zk|)(1+α)/2

|w − zk|

)
|dw|,

where

QN =
∞⋃

j=N

C(zj).

Letting N to go infinity we get
Mt log 1/t(F ) = 0.

The received contradiction proves (9). Consequently,

Mh(F2) = 0.

Thus, for each point eix ∈ E \ F2 in domain

{z; |eix − z| < 2(1− |z|)}

there are only finite number zeros of the function f(z).
By F. Riesz theorem we have the representation

f(z) = B(z)F (z),

where B(z) is the Blashke product constructed by zeros {wn} of the function f(z) and F (z) ∈ H∞, which
has no zeros at all.

Let us denote

v(z) =
∞∑

n=1

1− |z|2∣∣∣z − wn

|wn|

∣∣∣ (1− |wn|), |z| < 1.

For arbitrary two points z, w from the unit disk we have

− (1− |z|2)(1− |w|2)
|z − w|2

≤ − log
(

1 +
(1− |z|2)(1− |w|2)

|z − w|2

)
= log

∣∣∣∣ w − z

1− w̄z

∣∣∣∣2 .

Let y be a point on the unit circle and n0 be a natural number. Let for each n = n0, n0 + 1, . . . the
inequalities ∣∣∣∣y − wn

|wn|

∣∣∣∣ ≥ 4(1− |wn|), n = 1, 2, . . .

hold. Then for arbitrary point z, |z| < 1, satisfying the condition∣∣∣∣y − z

|z|

∣∣∣∣ ≤ 2(1− |z|).

there is a constant C > 0 such that
−Cv(z) ≤ log |B(z)|.

Thanks of the lemma 4, applied to the function v(z) ≥ 0, we get that there is a subset F3 ∈ ∂D with

Mh(t)(F3) = 0,
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where h(t) = tg(t) and for each point y ∈ ∂D \ F3 we have

sup
{

v(z)
g(1− |z|)

; |z| < 1,

∣∣∣∣y − z

|z|

∣∣∣∣ ≤ 2(1− |z|)
}

< +∞.

Consequently, there is a subset F4 with

Mh(t)(F4) = 0

and for each point y /∈ E \ F4 we have

sup
{

|f(z)|
(1− |z|)1−α

; |z| < 1,

∣∣∣∣y − z

|z|

∣∣∣∣ ≤ 2(1− |z|)
}

< ∞.

These remarks contradict to the theorem conditions since

E \ (F1 ∪ F2 ∪ F3 ∪ F4) 6= ∅.

5 Denoising problem for analytic functions

In this section we consider the following problem: let f(z) be a bounded analytic function and {zn}∞n=1

be a sequence from the unit disk. Let we can calculate empirically the values of this function at the
points {zn}∞n=1 with some error, i.e.

wn = f(zn) + εn, n = 1, . . . ,

where εn, n = 1, . . . is a sequence of independent random quantities with the same distribution and
with mean value equal to zero. The following problem naturally arises: is it possible to choose the points
{zn}∞n=1 in such a way that by observed quantities wn, n = 1, 2, . . . it will be possible to restore the
function f(z) by probability one?

The relation of this problem with the identification problen for linear bounded systems one can find
in [16].

Here we give some classical results of Shizuo Kakutani, see[8], which play a principal role to answer
this question.

Let Ω be an arbitrary set and let σ be a σ−field of subsets of Ω. Let <(σ) be the family of all
countably additive measures µ(dω) defined on σ for which µ(Ω) = 1.

Definition 5. Two measures µ, ν ∈ <(σ) called orthogonal (notation µ ⊥ ν) if there are disjoint
subsets B,B′ ∈ σ such that

µ(B) = ν(B′) = 1.

Let µ, ν ∈ <(σ) be measures on (Ω, σ). For arbitrary measure τ ∈ <(σ) such that µ and ν are absolutely
continuous in respect to τ , let us denote

ρ(µ, ν) =
∫

Ω

√
µ(dω)
τ(dω)

√
ν(dω)
τ(dω)

τ(dω).

This integral doesn’t depend upon the choice of the measure τ . That is way the following E.Hellinger’s
notation

ρ(µ, ν) =
∫

Ω

√
µ(dω)ν(dω)

is natural.
Let {µn}∞n=1 and {νn}∞n=1 be two family of probability measures on C. Let us denote by µ =

µ1 × µ2 × . . . , ν = ν1 × ν2 × . . . . the infinite direct products.
It is easy to see that if for some k0 we have µk0⊥νk0 then µ⊥ν. The case µk ∼ νk, k = 1, . . . was

considered in [12].
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Theorem (S. Kakutani). Let µk ∼ νk for all k = 1, . . .. Then the measures µ and ν are equivalent
if and only if

∞∏
k=1

ρ(µk, νk) > 0.

Otherwise those measures are orthogonal, i.e. µ ⊥ ν.

Here, we need only the following particular case of S. Kakutani’s Theorem. Let f(z), g(z) |z| < 1,
be bounded analytic functions and zk, k = 1, 2, . . . be points in the unite disk. Let

dµk(z) = P (z − f(zk))dxdy, z = x + iy

and
dνk(z) = P (z − g(zk))dxdy,

where P (z) ≥ 0 and ∫ ∞

−∞

∫ ∞

−∞
P (z)dxdy = 1.

We have
ρ(dµk, dνk) =

∫ ∞

−∞

∫ ∞

−∞

√
P (z − f(zk))P (z − g(zk))dxdy.

and
1− ρ(dµk, dνk) =

=
1
2

∫ ∞

−∞

∫ ∞

−∞

(√
P (z − f(zk))−

√
P (z − g(zk))

)2

dxdy ≥ A|f(zk)− g(zk)|2

for some number A > 0.
The corresponding infinite products of measures are orthogonal if

∞∑
k=1

|f(zk)− g(zk)|2 = ∞.

So, if we have
wn = H(zn) + εn, n = 1, . . . ,

then by probability one, it is possible to identify H(z) with some f(z), if the points {zn}∞n=1 are possible
to choose in such a way, that from the condition f(z), g(z) ∈ H∞ and

∞∑
k=1

|f(zk)− g(zk)|2 < ∞

it follows f(z) ≡ g(z). This note pernits to formulate the following result.

Theorem 6. Let 0 ≤ α < 1 be a fixed number.
Let {zn} be a sequence in the unit disk with

lim
n→∞

|zn| = 1.

Let E be a subset of unit circle such that for some continuous function 0 ≤ h(t), 0 < t, satisfying the
condition

lim
t→0+

h(t)
t log 1

t

= 0,

we have
Mh(E) > 0.
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Let for each point y ∈ E there is a subsequence {znk
} such that∣∣∣∣y − znk

znk

∣∣∣∣ < 2(1− |znk
|), k = 1, 2, ...

Let we can observe the quantities

Xn = S(zn) + ξn, n = 1, 2, . . .

where ξn, n = 1, 2, . . . are independent random variables with the same absolutely continuous distribu-
tions and zero mean values.

Let S(z) be a bounded analytic function and∫ 1

0

∫ π

−π

|S′(z)|2(1− |z|)αdxdy < ∞, 0 < α < 1.

Then, by Xn, n = 1, 2, . . . it is possible to restore the function S(z) by probability one.
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